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1 (i) Express
3

�3r − 1��3r + 2� in partial fractions. [2]

(ii) Using the method of differences, prove that

n

Ð
r=1

3

�3r − 1��3r + 2� =
1

2
−

1

3n + 2
. [2]

(iii) Deduce the value of

∞

Ð
r=1

1

�3r − 1��3r + 2� . [1]

2 (i) Determine the asymptotes and turning points of the curve with equation y =
x2 + 3

x + 1
. [7]

(ii) Sketch the curve. [3]

3 The complex numbers z
1
and z

2
are such that �z

1
� = 2, arg�z

1
� = 7

12
0, �z

2
� =

�
2 and arg�z

2
� = −1

8
0.

(i) Find, in exact form, the modulus and argument of
z
1

z
2

. [3]

(ii) Let z
3
=

P
z
1

z
2

Qn
. It is given that n is the least positive integer for which z

3
is a positive real

number. Find this value of n and the exact value of z
3
. [4]

4 A curve has polar equation r = 3
10
e
3
4
1
for 1 ≥ 0. The length of the arc of this curve between 1 = 0 and

1 = ! is denoted by L�!�.

(i) Show that L�!� = 1
2

 
e
3
4
!
− 1

!
. [5]

(ii) The point P on the curve corresponding to 1 = " is such that L�"� = OP, where O is the pole.

Find the value of ". [2]

5 Find, in the form y = f�x�, the solution of the differential equation
dy

dx
+ y tanh x = 2 cosh x, given that

y = 3
4
when x = ln 2. [8]

6 The cubic equation 4x3 − 12x2 + 9x − 16 = 0 has roots r
1
, r

2
and r

3
. A second cubic equation, with

integer coefficients, has roots R
1
=
r
2
+ r

3

r
1

, R
2
=
r
3
+ r

1

r
2

and R
3
=
r
1
+ r

2

r
3

.

(i) Show that 1 + R
1
=

3

r
1

and write down the corresponding results for the other roots. [2]

(ii) Using a substitution based on this result, or otherwise, find this second cubic equation. [6]
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7 The function y satisfies
d2y

dx2
+ x2y = x, and is such that y = 1 and

dy

dx
= 1 when x = 1.

(i) Using the given differential equation

(a) state the value of
d2y

dx2
when x = 1, [1]

(b) find, by differentiation, the value of
d3y

dx3
when x = 1. [2]

(ii) Hence determine the Taylor series for y about x = 1 up to and including the term in �x − 1�3 and
deduce, correct to 4 decimal places, an approximation for y when x = 1.1. [3]

8 (i) Write down the values of the constants a and b for which m5 � 1
6
m3�am2 + 2� − 1

12
m2�bm�. [1]

(ii) Prove by induction that
n

Ð
r=1

r5 = 1
6
n3�n + 1�3 − 1

12
n2�n + 1�2 for all positive integers n. [7]

9 (i) Use de Moivre’s theorem to prove that cos 31 = 4c3 − 3c, where c = cos1. [3]

(ii) Solve the equation 2 cos 31 −
�
3 = 0 for 0 < 1 < 0, giving each answer in an exact form. [2]

(iii) Deduce, in trigonometric form, the three roots of the equation x3 − 3x −
�
3 = 0. [3]

10 (i) Let G be a group of order 10. Write down the possible orders of the elements of G and justify

your answer. [2]

(ii) Let G
1
be the cyclic group of order 10 and let g be a generator of G

1
(that is, an element of order

10). List the ten elements of G
1
in terms of g and state the order of each element. [4]

(iii) The groupG
2
is defined as the set of ordered pairs �x, y�, where x ∈ �0, 1� and y ∈ �0, 1, 2, 3, 4�,

together with the binary operation ⊕ defined by

�x
1
, y

1
�⊕ �x

2
, y

2
� = �x

3
, y

3
�,

where x
3
= x

1
+ x

2
modulo 2 and y

3
= y

1
+ y

2
modulo 5.

(a) List the elements of G
2
and state the order of each element. [3]

(b) State, with justification, whether G
1
and G

2
are isomorphic. [1]
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11 Let A be the matrix

@
17 12

12 10

A
.

(a) (i) Determine the integer n for which 27A −A2 = nI, where I is the 2 × 2 identity matrix. [2]

(ii) Hence find A−1 in the form pA + qI for rational numbers p and q. [2]

(b) The plane transformation T is defined by T :

@
x

y

A
 → A

@
x

y

A
. It is given that T is a stretch, with

scale factor k, parallel to the line y = mx, where m > 0.

(i) Find the value of k. [2]

(ii) By considering A

@
x

mx

A
, or otherwise, determine the value of m. [4]

12 The curve C is given by y = 1
4
x2 − 1

2
ln x for 2 ≤ x ≤ 8.

(i) Find, in its simplest exact form, the length of C. [5]

(ii) When C is rotated through 20 radians about the x-axis, a surface of revolution is formed. Show

that the area of this surface is 0
�
270 − 47 ln 2 − 2�ln 2�2

�
. [10]

13 The planes �
1
and �

2
are both perpendicular to n, where n =

`
1

2

−2

a
. The points A �0, −9, 13� and

B �8, 7, −3� lie in �
1
and �

2
respectively.

(i) Find the equations of �
1
and �

2
in the form r.n = d and show that

−−→
AB is parallel to n. [4]

(ii) Calculate the perpendicular distance between �
1
and �

2
. [2]

(iii) Write down two vectors which are perpendicular to n and hence find, in the form

r = u + ,v + -w,

an equation for the plane �
3
which is parallel to �

1
and �

2
and exactly half-way between them.

[4]

(iv) The locus of all points P such that AP = BP = 12
�
2 is denoted by L.

(a) Give a full geometrical description of L. [4]

(b) Using the result of part (iii), or otherwise, find a point on L which has integer coordinates.

[4]
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